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Abstract. We perform simultaneous calculations of the radiative decays of scalar mesons f0(980) → γγ,
a0(980) → γγ, vector meson φ(1020) → γf0(980), γa0(980), γπ0, γη, γη′ and tensor mesons a2(1320) → γγ,
f2(1270) → γγ, f2(1525) → γγ, assuming all these states to be dominantly the qq̄ ones. A good description
of the considered radiative decays is reached by using almost the same radial wave functions for scalar and
tensor mesons that supports the idea for the f0(980), a0(980) and a2(1320), f2(1270), f2(1525) to belong
to the same P -wave qq̄ multiplet.

PACS. 13.40.Hq Electromagnetic decays – 12.38.-t Quantum chromodynamics – 14.40.-n Mesons

1 Introduction

Despite a long history of the P -wave qq̄ multiplet [1] the
problem of definition of qq̄ scalars is still a subject of lively
discussion, see, e.g., [2–4] and references therein. Radia-
tive decays of mesons may serve as a useful tool for the
study of qq̄ structure of mesons, in particular, P -wave qq̄
component in f0(980) and a0(980). In this way, it is rather
important to investigate simultaneously the other mesons
which belong to the P -wave qq̄ multiplet, namely, tensor
mesons a2(1320), f2(1270) and f2(1525). In the present
paper, combined calculations of the decays a0(980) → γγ,
f0(980) → γγ, a2(1320) → γγ, f2(1270) → γγ, and
f2(1525) → γγ are carried out assuming the qq̄ radial
wave functions in these mesons to be nearly the same.

Radiative decays of the φ-meson are another source of
important information on scalar mesons. We have calcu-
lated the decay processes with the production of mesons
belonging to scalar and pseudoscalar sectors: φ(1020) →
γf0(980), γa0(980) and φ(1020) → γπ0, γη, γη′. These lat-
ter, of the type of V → γP , are the classical reactions,
which had been used rather long ago for the determina-
tion of qq̄ structure of vector and pseudoscalar mesons [5].

We believe that simultaneous description of the pro-
cesses S → γγ, T → γγ, V → γS and V → γP is a
necessary test for the whole calculation procedure and de-
termination of the P -wave qq̄ multiplet.

In calculations of the decay form factors we use spec-
tral integration over qq̄ states together with the light-cone
wave functions for the qq̄-mesons; the method of the spec-
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tral integration for the form factor amplitudes has been
developed in a set of papers [6–9].

In sect. 2 we present necessary elements of the tech-
nique for the calculation of radiative decay amplitudes.
The detailed presentation of the technique for the descrip-
tion of composite qq̄ systems can be found in refs. [7–
9], where the pion form factor was studied together with
transition form factors π0 → γ(Q2)γ, η → γ(Q2)γ and
η′ → γ(Q2)γ. The method of spectral integration works
for the form factor amplitudes which obey the requirement
of analyticity, causality and gauge invariance. The used
technique allows one to introduce the composite-particle
wave functions and perform calculations in terms of the
light-cone variables.

It is worth noting that this calculation technique for
the processes involving bound states has a broader appli-
cability than for the qq̄ systems only: in [6] this method
got its approbation by describing the deuteron as a com-
posite np system, then this very technique was applied to
heavy mesons [10]. For the reader’s convenience, in sect. 2
we recall briefly the basic points of this approach. Then
we give necessary formulae for the calculation of partial
widths for the decays V → γS, V → γP , S → γγ and
T → γγ.

Results of the calculation are presented in sect. 3.
First, we discuss the decay φ(1020) → γf0(980). Our
calculations show that the data on branching ratio
BR(φ(980) → γf0(980)) = (3.4 ± 0.4+1.5

−0.5) · 10−4 [11,12]
may be described assuming the qq̄ structure of f0(980)
and varying the ss̄ and nn̄ = (uū + dd̄)/

√
2 components

in a broad interval. For the flavour wave function written
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as ψflavour[f0(980)] = nn̄ cos ϕ + ss̄ sinϕ the agreement
with data is reached with 25◦ ≤ |ϕ| ≤ 90◦.

In sect. 3, we calculate also the partial widths for the
decays φ(1020) → γη, γη′, γπ0, with the same technique
as has been used for the reaction φ(1020) → γf0(980)
and with the same parametrization of the φ-meson wave
function. The calculations demonstrate a good agreement
with data as well. It should be stressed that in fact the
decays φ(1020) → γη, γη′ are calculated without any free
parameter: these decays are governed by ss̄ components in
η and η′ which are well known; the wave functions of the
basic pseudoscalar and vector mesons are also known, see,
e.g. [7,8,13]. So, the calculations of the decays φ(1020) →
γη, γη′ are needed for the verification of the method only,
and the results provide us with a strong argument that the
applied method for the calculation of the radiative decays
of qq̄-mesons is wholly reliable. The decay φ(1020) → γπ0

allows us to estimate the admixture of the nn̄ component
in φ(1020). With the flavour wave function of the φ(1020)
written as ψflavour(φ(1020)) = ss̄ cos ϕV + nn̄ sinϕV , we
have |ϕV | ≤ 4◦. The partial width of φ(1020) → γa0(980)
is also proportional to the probability of the nn̄ component
in φ(1020); we discuss this decay in sect. 3 as well.

Two-photon radiative decays provide important infor-
mation about P -wave qq̄-mesons; the technique for the
calculation of scalar- and tensor-meson decays, S → γγ
and T → γγ, is presented in sect. 2.

Under the assumption of the qq̄ structure of a0(980)
and f0(980), analysis of the partial widths a0(980) → γγ
and f0(980) → γγ has been performed in [9]. The data
for a0(980) → γγ are in reasonable agreement with cal-
culation. Concerning the f0(980), the extraction of the
signal f0(980) → γγ from the measured spectra γγ → ππ
faces strong interference “resonance + background”, thus
resulting in uncontrollable errors (see, for example, the K-
matrix calculation of the S-wave spectra γγ → ππ [14]).
The recently obtained partial width Γ (f0(980) → γγ) =
0.28+0.09

−0.13 keV [15] is a factor 2 smaller than the aver-
aged value reported previously (0.56 ± 0.11 keV [16]).
In sect. 3 we re-analyse the decay f0(980) → γγ using
new data for the width. Thus, we get two allowed in-
tervals for the nn̄/ss̄ mixing angle: 80◦ ≤ ϕ ≤ 93◦ and
(−54◦) ≤ ϕ ≤ (−42◦). The restrictions for mixing angle
ϕ which come from the combined analysis of the radia-
tive decays φ(1020) → γf0(980) and f0(980) → γγ are
discussed in sect. 4; we have two solutions for ϕ:

ϕ = −48◦ ± 6◦, ϕ = 86◦ ± 3◦ . (1)

For positive mixing angle, the analysis gives us strong re-
striction for the value of the radius of f0(980): R2

f0(980)
≤

7 GeV−2 (remind that the pion radius squared is R2
π �

10 GeV−2).
In sect. 3 we discuss also the results of the calcula-

tion of tensor-meson two-photon decays: a2(1320) → γγ,
f2(1270) → γγ and f2(1525) → γγ. The form factors
of the corresponding transitions depend strongly on the
choice of the vertex T → qq̄. In line with the qq̄ clas-
sification, we perform comparison with data for the ver-
tex which is related to the dominant qq̄ P -wave. The re-

sults are in reasonable agreement with the measured par-
tial width Γ (a2(1320) → γγ), calculations being carried
out with the wave function of a2(1320) whose character-
istics are close to those of a0(980), namely, R2

a2(1320)
�

R2
a0(980)

� 7–12 GeV−2. Description of the two-photon
decays of f2(1270) and f2(1525) fixes the nn̄/ss̄ ra-
tio for these states. With flavour wave functions writ-
ten as ψflavour[f2(1270)] = nn̄ cos ϕT + ss̄ sinϕT and
ψflavour[f2(1525)] = −nn̄ sin ϕT + ss̄ cos ϕT , simultaneous
description of the data can be reached at R2

f2(1270)
�

R2
f2(1525)

� 7–10 GeV−2, requiring either ϕT � 0◦ or
ϕT � 25◦.

Simultaneous description of radiative decays of scalar
and tensor mesons, f0(980), a0(980) and a2(1320),
f2(1270), f2(1525), with the use of similar radial wave
functions, argues in favour of their belonging to the same
P -wave qq̄ multiplet.

2 Radiative decays in the framework of the
spectral integration technique

Given here are the formulae for partial widths of the ra-
diative decays: V → γS, V → γP , S → γγ and T → γγ.
Using as an example the reaction V → γS, we present
necessary elements of the spectral integration technique
applied for the calculation of transition form factors.

2.1 Moment operators for the transition amplitudes
S → γγ, T → γγ, V → γS and V → γP

For the amplitudes under consideration, we present the
moment operators for the two-photon decays of the scalar
and tensor mesons: f0(980), a0(980) → γγ and f2(1270),
a2(1320), f2(1525) → γγ, and for the radiative decays of
the φ-meson: φ(1020) → γπ0, γη, γη′, γa0(980), γf0(980).
Systematic presentation of the moment operators is given
in [17].

2.1.1 Transition amplitude S → γγ

The transition amplitude S → γ⊥(q2)γ⊥(q′2) for the
transversely polarized photons reads

Aαβ = e2FS→γγ(q2, q′2)g⊥⊥
αβ . (2)

Here e is the electron charge (e2/4π = α = 1/137); the
indices α,β refer to the photons; q and q′ are the pho-
ton momenta. The metric tensor g⊥⊥

αβ works in the space
orthogonal to p = q + q′ and q:

g⊥⊥
αβ = gαβ − q⊥αq⊥β

q2
⊥

− pαpβ

p2
,

q⊥α = g⊥αα′qα′ , g⊥αα′ = gαα′ − pαpα′

p2
. (3)
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2.1.2 Tensor meson decay amplitude T → γγ

The T → γγ decay amplitude has the following structure:

Aµν,αβ = e2
[
S

(0)
µν,αβ(p, q) F

(0)
T→γγ(0, 0)

+S
(2)
µν,αβ(p, q) F

(2)
T→γγ(0, 0)

]
, (4)

where S
(0)
µν,αβ(p, q) and S

(2)
µν,αβ(p, q) are the moment oper-

ators, indices α, β refer to photons and µ, ν to the ten-
sor meson. Two transition form factors for the trans-
versely polarized photons T → γ⊥(q2)γ⊥(q′2), namely,
F

(0)
T→γγ(q2, q′2) and F

(2)
T→γγ(q2, q′2), depend on the pho-

ton momenta squared q2 and q′2; the limit q2 = q′2 = 0
corresponds to the two-photon decay.

The moment operators read

S
(0)
µν,αβ(p, q) =

(
q⊥µq⊥ν

q2
⊥

− 1
3
g⊥µν

)
g⊥⊥

αβ (5)

and

S
(2)
µν , αβ(p, q) = g⊥⊥

µα g⊥⊥
νβ + g⊥⊥

µβ g⊥⊥
να − g⊥⊥

µν g⊥⊥
αβ . (6)

The moment operators are orthogonal in the space of pho-
ton polarizations: S

(0)
µν,αβS

(2)
µ′ν′,αβ = 0.

2.1.3 Transition amplitude V → γS

The transition amplitude V → γ⊥(q2)S for the trans-
versely polarized photon takes the form

Aµα = eFV →γS(q2)g⊥⊥
µα . (7)

The index α refers to the photon and µ to the vector
meson; p and q are the momenta of the initial vector meson
and photon. The metric tensor g⊥⊥

µα works in the space
orthogonal to p and q. The limit q2 = 0 corresponds to
the radiative decay of the vector meson.

2.1.4 Transition amplitude V → γP

The spin operator for the amplitude V → γP contains
the antisymmetric tensor εµναβ , and the amplitude has
the following structure:

Aµα = e εµαν1ν2pν1qν2FV →γP (q2) . (8)

The notations are the same as for V → γS.

2.2 Form factor for the radiative decay V → γ⊥(q2)S

The method of calculation of the three-point form fac-
tor amplitudes in terms of the spectral representations
over the qq̄ intermediate-state masses was developed in [7].
Here we give a schematic presentation of the method using
the reaction V → γ⊥(q2)S as an example.

γ

φ
q
_

q q

f
0
 (980)

Fig. 1. a) Diagrammatic representation of the transition
φ(1020) → γf0(980). b) Three-point quark diagram: dashed
lines I and II mark two cuttings in the double spectral repre-
sentation.

2.2.1 Double spectral representation of the form factor

Assuming the qq̄ structure for the initial (V ) and final (S)
mesons, the amplitude of the decay V → γS is determined
by the subprocesses V → qq̄ and qq̄ → S, with the emis-
sion of γ(q2), see fig. 1a. The corresponding three-point
loop diagram is calculated using a double spectral repre-
sentation over intermediate qq̄ states: they are marked by
dashed lines in fig. 1b.

To be illustrative, let us start with the three-point
Feynman diagram. For the process of fig. 1a one has

A(Feynman)
µν =

∫
d4k

i(2π)4
GV

× Z
(qq̄)
V →γS S

(V →γS)
µν

(m2 − k2
1)(m2 − k′2

1 )(m2 − k2
2)

GS . (9)

Here k1, k′
1, k2 are the quark momenta, m is the quark

mass, and GV , GS are quark-meson vertices; the quark
charges are included into Z

(qq̄)
V →γS . The spin-dependent

block reads

S(V →γS)
µν =−Sp

[
(k̂′

1+m)γ⊥
µ (k̂1+m)γ⊥

ν (−k̂2+m)
]
, (10)

where the Dirac matrices γ⊥
µ and γ⊥

ν are orthogonal to the
emitted momenta: γ⊥

µ qµ = 0 and γ⊥
ν pν = 0.

To transform the Feynman integral (9) into double
spectral integral over invariant qq̄ masses squared, one
should make the following steps:
i) consider the corresponding energy-off-shell diagram,
fig. 1b, with P 2 = (k1 + k2)2 ≥ 4m2, P ′2 = (k′

1 + k2)2 ≥
4m2 and fixed momentum transfer squared q2 = (P−P ′)2,
ii) extract the invariant amplitude by separating spin op-
erators,
iii) calculate the discontinuities of the invariant amplitude
over intermediate qq̄ states marked in fig. 1b by dashed
lines.

The double discontinuity is the integrand of the spec-
tral integral over P 2 and P ′2. Furthermore, we put the
following notations:

P 2 = s, P ′2 = s′ . (11)
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For the calculation of discontinuity, by cutting the Feyn-
man diagram, the pole terms of the propagators are re-
placed with their residues: (m2−k2)−1 → δ(m2−k2). So,
the particles in the intermediate states marked by dashed
lines I and II in fig. 1b are mass-on-shell, k2

1 = k2
2 = k′2

1 =
m2. As a result, the Feynman diagram integration turns
into the integration over phase spaces of the cut states.
The corresponding phase space for the three-point dia-
gram reads

dΦ(P, P ′; k1, k2, k
′
1) =

dΦ(P ; k1, k2)dΦ(P ′; k′
1, k

′
2)(2π)32k20δ

(3)(k′
2 − k2) , (12)

where the invariant two-particle phase space dΦ(P ; k1, k2)
is determined as follows:

dΦ(P ; k1, k2) =
1
2

d3k1

(2π)32k10

d3k2

(2π)32k20
(2π)4δ(4)(P − k1 − k2) . (13)

The last step is to single out the invariant component
from the spin factor (10). According to (7), the spin factor
(10) is proportional to the metric tensor, S

(V →γS)
µν ∼ g⊥⊥

µν ,
which works in the space of the intermediate-state mo-
menta. Then the spin factor Str

V →γS , determined as

S(V →S)
µν = g⊥⊥

µν SV →γS(s, s′, q2), (14)

is equal to

SV →γS(s, s′, q2) =

−2m

(
4m2 + s − s′ + q2 − 4ss′α(s, s′, q2)

s + s′ − q2

)
, (15)

α(s, s′, q2) =
q2(s + s′ − q2)

2q2(s + s′) − (s − s′)2 − q4
.

Recall that, when going from (10) to (15), we use the mass-
on-shell relations (k1k2) = s/2 − m2, (k′

1k2) = s′/2 − m2,
and (k′

1k1) = m2 − q2/2.
The spectral integration is carried out over the en-

ergy squared of quarks in the intermediate states, s =
P 2 = (k1 + k2)2 and s′ = P ′2 = (k′

1 + k2)2, at fixed
q2 = (P ′ − P )2. The spectral representation for the am-
plitude AV →γS(q2) reads

AV →γS(q2) =

∞∫
4m2

ds

π

∞∫
4m2

ds′

π

GV (s)
s − M2

V

GS(s′)
s′ − M2

S

×
∫

dΦ(P, P ′; k1, k2), k′
1 S

(tr)
V →γS(s, s′, q2)Z(qq̄)

V →γS . (16)

The spectral representation of the amplitude AV →γS(q2)
gives us the invariant part of A

(Feynman)
µν , eq. (9), when

the vertices, GV (s) and GS(s′), are constant. Generally,
the energy-dependent vertices can be incorporated into
spectral integrals. According to [6], the form factor of a
composite system can be obtained by considering the two-
particle partial-wave scattering amplitude 1 + 2 → 1 + 2:

the pole sigularity of this amplitude corresponds to the
composite system. The amplitude for the emission of a
photon by the two-particle-interaction system has two
poles related to the states “before” and “after” electro-
magnetic interaction, and the two-pole residue of this am-
plitude provides us the form factor of the composite sys-
tem. When a partial-wave scattering amplitude is treated
using the dispersion relation N/D-method, the vertex
G(s) is determined by the N -function: the vertex as well
as the N -function have left-hand side singularities which
are determined by forces between the particles 1 and 2.

It is reasonable to name the ratios GV (s)/(s−m2) and
GS(s′)/(s′ − m2) the wave functions of vector and scalar
particle, respectively:

GV (s)
s − m2

= ψV (s) ,
GS(s′)
s′ − m2

= ψS(s′) . (17)

Working with eq. (16), one can express it in terms of the
light-cone variables.

2.2.2 Light-cone variables

One can transform eq. (16) to the light-cone variables,
using the boost along the z-axis. Let us use the frame
where the initial vector meson moves along the z-axis with
the momentum p → ∞:

P = (p+
s

2p
,0, p), P ′ = (p+

s′ + q2
⊥

2p
,−q⊥, p). (18)

In this frame the two-particle phase space is equal to

dΦ(P ; k1, k2) =
1

16π2

dx1dx2

x1x2
d2k1⊥d2k2⊥δ(1 − x1 − x2)δ(2)(k1⊥ + k2⊥)

×δ

(
s − m2 + k2

1⊥
x1

− m2 + k2
2⊥

x2

)
, (19)

where xi = kiz/p, and the phase space for the triangle
diagram reads

dΦ(P, P ′; k1, k2, k
′
1) =

1
16π

dx1dx2

x2
1x2

d2k1⊥d2k2⊥δ(1 − x1 − x2)δ(2)(k1⊥ + k2⊥) ,

δ

(
s − m2 + k2

1⊥
x1

− m2 + k2
2⊥

x2

)

× δ

(
s′ + q2

⊥ − m2 + (k1⊥ − q⊥)2

x1
− m2 + k2

2⊥
x2

)
. (20)

Then the amplitude V → γ(q2)S is written as

AV →γ(q2)S(q2) =
Z

(qq̄)
V →γS

16π3

1∫
0

dx

x(1 − x)2

×
∫

d2k⊥ψV (s)ψS(s′)SV →γS(s, s′, q2) , (21)
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where x = k2z/p , k⊥ = k2⊥, and the qq̄ invariant-masses
squared are

s =
m2 + k2

⊥
x(1 − x)

, s′ =
m2 + (k⊥ + xq⊥)2

x(1 − x)
. (22)

2.2.3 Charge factors

Charge factors for the nn̄ and ss̄ components in the tran-
sition φ → γf0 are determined as

Z
(nn̄)
φ→γf0

= 2ζ
(nn̄)
φ→γf0

=
1
6

, (23)

Z
(ss̄)
φ→γf0

= 2ζ
(ss̄)
φ→γf0

= 2es = −2
3

,

where ζ
(nn̄)
φ→γf0

is the following convolution: ζ
(nn̄)
φ→γf0

= (uū+
dd̄)/

√
2·êq ·(uū+dd̄)/

√
2 = (eu+ed)/2. Here eu and ed are

charges of u and d quarks. The factor 2 in (23) is related to
two possibilities for photon emission, namely, from quark
and antiquark. Likewise, for the process φ → γa0, one has

Zφ→γa0 = 2ζφ→γa0 = eu − ed = 1 . (24)

2.2.4 Meson wave functions

To calculate the form factors, one should define meson
wave functions. Following [18], we parametrize the wave
functions in the exponential form:

ψV (s) = CV e−bV s, ψS(s) = CSe−bSs . (25)

The parameters bV and bS characterize the size of the sys-
tem, they are related to the mean radii squared, R2

V and
R2

S , of the mesons. At fixed R2
V and R2

S the constants CV

and CS are determined by the wave function normaliza-
tion, which itself is given by the meson form factor in the
external field, Fmeson(q2), and at small q2 the form factor
is

Fmeson(q2) � 1 +
1
6
R2

mesonq2 . (26)

The requirement Fmeson(0) = 1 fixes the constant Cmeson

in (25), while the value R2
meson is directly related to bmeson.

In terms of the light-cone variables, the form factor
Fmeson(q2) reads

Fmeson(q2) =
1

16π3

1∫
0

dx

x(1 − x)2

×
∫

d2k⊥Ψmeson(s)Ψmeson(s′)S(tr)
meson(s, s′, q2) , (27)

where S
(tr)
meson is determined by the following traces:

2P⊥
µ S

(tr)
S (s, s′, q2) =

−Sp
[
(k̂′

1 + m)γ⊥
µ (k̂1 + m)(−k̂2 + m)

]
,

2P⊥
µ S

(tr)
V (s, s′, q2) =

−1
3
Sp

[
γ′⊥

α (k̂′
1 + m)γ⊥

µ (k̂1 + m)γ⊥
α (−k̂2 + m)

]
(28)

and the orthogonal components entering (28) are as fol-
lows:

P⊥
µ = Pµ − qµ

(Pq)
q2

, γ⊥
µ = γµ − qµ

q̂

q2
,

γ⊥
α = γα − Pα

P̂

P 2
, γ′⊥

α = γα − P ′
α

P̂ ′

P ′2 , (29)

where q = k′
1 − k1. When determining S

(tr)
V (s, s′, q2), we

have averaged over three polarizations of the vector meson
that results in the factor 1/3.

The functions S
(tr)
S (s, s′, q2) and S

(tr)
V (s, s′, q2) are

equal to

S
(tr)
S (s, s′, q2)=α(s, s′, q2)(s+s′−8m2−q2)+ q2 ,

S
(tr)
V (s, s′, q2)=

2
3

[
α(s, s′, q2)(s+s′+4m2−q2)+q2

]
, (30)

where α(s, s′, q2) is given in (15).
The problem of the calculation accuracy by using

the exponential type of wave functions was investigated
in [18], where two calculation variants had been carried
out as follows:
1) with the wave functions for η- and η′-mesons recon-
structed by using the reactions η → γ(Q2)γ and η′ →
γ(Q2)γ at Q2 being varied in a broad interval,
2) with exponential-type parametrization of wave func-
tions.

Both calculation variants provided us with results
which are close to each other at the same values of R2

η

and R2
η′ ; the difference is about 2% for the decay form

factors.

2.2.5 Partial width

The decay partial width is determined as

mV ΓV →γS =
1
3

∫
dΦ(pV ; q, p′S)|Aµν |2 . (31)

Here averaging over spin projections of the φ-meson and
summing over photon ones is carried out (summation over
photon spin variables results in the metric tensor g⊥⊥

µµ′ );
the two-particle phase space for the radiative decay V →
γ +S is equal to

∫
dΦ(pV ; q, p′S) = (m2

V −m2
S)/(16πm2

V ).
The partial width in terms of the form factor reads

mV ΓV →γS =
1
6
α

m2
V − m2

S

m2
V

|FV →γS(0)|2 . (32)

2.3 The process V → γP

The light-cone representation of the transition form factor
V → γ⊥(q2)P reads

FV →γP (q2) =
ZV →γP

16π3

1∫
0

dx

x(1 − x)2

×
∫

d2k⊥ΨV (s)ΨP (s′)SV →γP (s, s′, q2), (33)
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The spin factor for pseudoscalar mesons is determined by

−Sp
[
iγ5(k̂′

1 + m)γ⊥⊥
α (k̂1 + m)γ′⊥

µ (−k̂2 + m)
]

=

εµαν1ν2Pν1 q̃ν2SV →γP (s, s′, q2) (34)

where q̃ = P − P ′ and q̃αγ⊥⊥
α = 0, P ′

µγ′⊥
µ = 0. The spin

factor is equal to

SV →γP (s, s′, q2) = 4m. (35)

Charge factors for the considered radiative decays are as
follows: for the ss̄ component in the reactions φ → γη, γη′,
Z

(ss̄)
φ→γη = Z

(ss̄)
φ→γη′ = −2/3, and for the π0 and a0(980)

productions, Zφ→γπ0 = Zφ→γa0(980) = 1.
The partial width for the decay V → γP is equal to

mV ΓV →γP =
1
3

∫
dΦ(pV ; q, p′P )|Aµν |2 =

1
6
α

m2
V − m2

P

m2
V

|FV →γP (0)|2 . (36)

2.4 Processes S → γγ

Our calculation of the two-photon decays of scalar and
tensor mesons is based on the method developed in [8]
for the study of the pseudoscalar meson transitions π0 →
γ(q2)γ, η → γ(q2)γ and η′ → γ(q2)γ; and for the pho-
ton we use the quark-antiquark wave function which was
found in [8]. We perform the calculation of the scalar-
and tensor-meson transition form factors S → γ(q2)γ and
T → γ(q2)γ in the region of small q2; these form factors,
in the limit q2 → 0, determine the partial widths S → γγ
and T → γγ.

The transition form factor qq̄-meson → γ(q2)γ is deter-
mined by the three-point quark loop diagram of the type
of fig. 1b that is a convolution of the qq̄-meson and photon
wave functions, ψqq̄ ⊗ ψγ . Following [8], we represent the
photon wave function as a sum of two components which
describe the prompt production of the qq̄ pair in the large
s′ (with a point-like vertex for the transition γ → qq̄) as
well as in the low-s′ region where the vertex γ → qq̄ has a
nontrivial structure due to soft qq̄ interactions. The pro-
cess of fig. 1b at moderately small |q2| is mainly saturated
by the contribution of the low-s′ region, in other words,
by the soft component of the photon wave function. The
soft component of the photon wave function was restored
in [8] on the basis of experimental data for the transition
π0 → γ(q2)γ at |q2| ≤ 1 GeV2; it is shown in fig. 2.

Once the photon wave function is found, the decay
form factors S → γγ and T → γγ provide the opportunity
to investigate the scalar and tensor meson wave functions.

2.4.1 Form factor S → γ(q2)γ

Following the prescription given in the previous sections
for V → γ(q2)S and V → γ(q2)P , we present the ampli-
tude of the process S → γ(q2)γ in terms of the light-cone

Fig. 2. Photon wave function for nonstrange quarks,
ψγ→nn̄(k2) = gγ(k2)/(k2 + m2), where k2 = s/4 − m2; the
wave function for the ss̄ component is equal to ψγ→ss̄(k

2) =
gγ(k2)/(k2 + m2

s); the constituent quark masses are m =
350 MeV and ms = 500 MeV.

variables. The transition form factor S → γ(q2)γ reads

FS→γγ(q2, 0) =
ZS→γγ

√
Nc

16π3

1∫
0

dx

x(1 − x)2

×
∫

d2k⊥ψS(s)ψγ(s′)SS→γγ(s, s′, q2). (37)

Here, as before in eq. (21), the light-cone variables are
introduced as follows: x = k2z/p, k⊥ = k2⊥, and the
qq̄ invariant-masses squared, s and s′, are determined by
eq. (22). The factor

√
Nc, where Nc = 3 is the number

of colours, is related to the normalization of the photon
wave function performed in [8].

The charge factor ZS→γγ = 2ζS→γγ is determined by
the quark content of the S-meson. We have two loop di-
agrams with quark lines drawn clockwise and anticlock-
wise: the factor 2 in the determination of ZS→γγ stands
for this doubling. For the f0-meson, one has two compo-
nents with different charge factors ζnn̄→γγ = (e2

u +e2
d)/

√
2

and ζss̄→γγ = e2
s, while for the a0-meson ζa0→γγ =

(e2
u − e2

d)/
√

2.
The spin structure factor SS→γγ(s, s′, q2) is fixed by

the three-point quark loop trace for the amplitude of
fig. 1b, with transverse polarized photons:

−Sp[γ⊥⊥
β (k̂′

1 + m)γ⊥⊥
α (k̂1 + m)(−k̂2 + m)] =

SS→γγ(s, s′, q2) g⊥⊥
αβ . (38)

Here γ⊥⊥
β and γ⊥⊥

α stand for photon vertices, γ⊥⊥
α =

g⊥⊥
αµ γµ, while g⊥⊥

αµ is determined by formula (3) with the
following substitutions: q → P − P ′ and q′ → P ′.
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One has

SS→γγ(s, s′, q2) =

−2m

[
4m2−s+s′+q2− 4ss′q2

2(s+s′)q2−(s−s′)2−q4

]
. (39)

The partial width, ΓS→γγ , is determined as follows:

mSΓS→γγ =
1
2

∫
dΦ(pS ; q, q′)|Aµν |2 =

πα2|FS→γγ(0, 0)|2 . (40)

Here mS is the scalar-meson mass, the summation is car-
ried out over outgoing photon polarizations, the photon
identity factor, 1/2, is written explicitly, and the two-
photon invariant phase space is equal to dΦ2(pS ; q, q′) =
1/(16π).

2.5 Two-photon tensor-meson decay T → γγ

The decay amplitude T → γ⊥(q2)γ can be considered
quite analogousy to the amplitude of the two-photon
scalar-meson decay. The light-cone representation for the
form factor F

(H)
T→γγ(q2, q′2 = 0) with H = 0, 2 reads

F
(H)
T→γγ(q2, 0)=

ZT→γγ

√
Nc

16π3

1∫
0

dx

x(1 − x)2

×
∫

d2k⊥ψT (s)ψγ(s′)S(H)
T→γγ(s, s′, q2). (41)

Here we use the same notation as in (37); the charge fac-
tors for the tensor and scalar mesons are equal to one
another, ZT→γγ = ZS→γγ .

The spin structure factors are fixed by the vertex for
transition T → qq̄; we denote this vertex as Tµν . One has

S
(T )
µν,αβ = Sp[γ⊥⊥

β (k̂′
1 + m)γ⊥⊥

α (k̂1 + m)Tµν(k̂2 − m)] =

S
(0)
µν,αβ(P, q̃)S(0)(P 2, P ′2, q̃2)

+S
(2)
µν,αβ(P, q̃)S(2)(P 2, P ′2, q̃2), (42)

where γ⊥⊥
α and γ⊥⊥

β stand for photon vertices, γ⊥⊥
α =

g⊥⊥
αα′γα′ , and g⊥⊥

αα′ is determined by eq. (3) with the fol-
lowing substitutions: q → P − P ′ and q′ → P ′. The mo-
ment operators S

(0)
µν,αβ(P, q̃) and S

(2)
µν,αβ(P, q̃) work also

in the intermediate-state momentum space. Recall that
q̃ = P − P ′ and P 2 = s, P ′2 = s′, q̃2 = q2, while the
momenta k′

1, k1 and k2 are mass-on-shell.
The vertex Tµν(k) in its minimal form reads

Tµν(k) = kµγν + kνγµ − 2
3
g⊥µν k̂ , (43)

where k = k1 − k2 and g⊥µνPν = 0.

Spin structure factors S(0)(s, s′, q2) and S(2)(s, s′, q2)
are calculated by projecting (42) on the moment operators
S

(H)
µν,αβ(P, q̃):

S(H)(s, s′, q2) =
S

(H)
µν,αβ(P, q̃)S(T )

µν,αβ(
S

(H)
µ′ν′,α′β′(P, q̃)

)2 . (44)

Explicit expressions for the spin structure factors
S(0)(s, s′, q2) and S(2)(s, s′, q2) are rather cumbersome,
and we do not present them here.

The qq̄ (2++) state can be constructed in two ways,
namely, with the qq̄ orbital momenta L = 1 and L = 3
(the 3P2qq̄ and 3F2qq̄ states). The vertex Tµν of eq. (43),
corresponding to the dominant P -wave qq̄ state, includes
also a certain admixture of the F -wave qq̄ state.

The vertex for the production of pure qq̄ (L = 1) state
reads

T (L=1)
µν = kµΓν + kνΓµ − 2

3
g⊥µν(Γk) ,

Γµ = γ⊥
µ − kµ

2m +
√

s
, (45)

where the operator Γµ selects the spin-1 state for the qq̄
(see [6,17] for detail).

The (L = 3)-operator for the 3F2qq̄ state is equal to

T (L=3)
µν =kµkν(Γk)− k2

5
(
g⊥µν(Γk)+Γµkν +Γνkµ

)
. (46)

For the qq̄ wave function of tensor mesons, we use a
parametrization similar to that for scalar mesons, see
eq. (25). The parameters CT and bT are determined by
the tensor-meson charge form factor at small q2, eq. (26):
the charge form factor is given by eq. (27). The spin factor
for the tensor meson, ST (s, s′, q2) is defined by the quark
loop trace as follows:

1
5
Sp[Tµν(k̂1 + m)γα(k̂′

1 + m)T ′
µν(k̂2 − m)] =

2P⊥αST (s, s′, q2), (47)

The operator Tµν is written for the initial state transition
T → qq̄, eq. (43), while T ′

µν describes the production of the
outgoing tensor meson qq̄ → T that requires the following
substitutions in (43): k1 → k′

1 and P → P ′. The tensor
meson charge form factor is averaged over polarizations
that results in the factor 1/5 in (47).

The partial width, ΓT→γγ , is determined as

mT ΓT→γγ =
1
2

∫
dΦ(pT ; q, q′)

1
5

∑
µν,αβ

|Aµν,αβ |2 =

4
5
πα2

[
1
3
|F (0)

T→γγ(0, 0)|2 + |F (2)
T→γγ(0, 0)|2

]
. (48)

Here mT is the tensor-meson mass, the summation is car-
ried out over outgoing photon polarizations, the photon
identity factor, 1/2, is written explicitly; the averaging
over tensor-meson polarizations results in the factor 1/5.
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3 Results

In this section we present the results of the calcu-
lations of the partial widths for the radiative decays
φ(1020) → γf0(980), φ(1020) → γη, γη′, γπ0, γa0(980)
and two-photon decays f0(980) → γγ, a0(980) → γγ,
a2(1320) → γγ, f2(1270) → γγ, f2(1525) → γγ.

3.1 φ(1020) → γf0(980): the decay amplitude and
partial width

Here we calculate the branching ratio for the decay
φ(1020) → γf0(980) assuming the qq̄ structure of f0(980).

3.1.1 Wave functions of φ(1020) and f0(980)

We write the wave functions of φ(1020) and f0(980) as
follows:

Ψφ(s) = (nn̄ sin ϕV + ss̄ cos ϕV ) ψφ(s) ,

Ψf0(980)(s) = (nn̄ cos ϕ + ss̄ sin ϕ) ψf0(980)(s) , (49)

assuming similar s-dependence for the nn̄ and ss̄ com-
ponents. For ψφ(s) and ψf0(980)(s) the exponential pa-
rameterization is used, eq. (25). The radius squared of
the nn̄ component in the φ-meson is suggested to be
approximately the same as that of the pion: R2

φ(nn̄) �
10.9GeV−2, while the radius squared for the ss̄ com-
ponent, R2

φ(ss̄), appears to be slightly less, R2
φ(ss̄) �

9.3GeV−2, that corresponds to bφ = 2.5 GeV−2. As to
f0(980), we vary the radius of the nn̄ component in the
interval 6GeV−2 ≤ R2

f0(980)
(nn̄) ≤ 18GeV−2.

3.1.2 Partial width of φ(1020) → γf0(980)

The amplitude Aφ→γf0(980)(0) is the sum of two terms
related to the nn̄ and ss̄ components:

Aφ→γf0(0) = cos ϕ sin ϕV F
(nn̄)
φ→γf0(980)

(0)

+ sin ϕ cos ϕV F
(ss̄)
φ→γf0(980)

(0) . (50)

In our estimations we put cos ϕV ∼ 0.99 and, correspond-
ingly, | sin ϕV | ∼ 0.14; for the f0(980) we vary the mixing
angle in the interval 0◦ ≤ |ϕ| ≤ 90◦.

The results of the calculation are shown in figs. 3 and 4.
In fig. 3a the values A

(nn̄)
φ→γf0(980)

(0) and A
(ss̄)
φ→γf0(980)

(0) are
plotted versus radius squared, R2

f0(980)
.

In fig. 4 one can see the value BR(φ → γf0(980)) at
various ϕ. Shaded areas correspond to the variation of
ϕV in the interval −8◦ ≤ ϕV ≤ 8◦; the lower and up-
per curves of the shaded area correspond to the destruc-
tive and constructive interferences of A

(nn̄)
φ→γf0(980)

(0) and

A
(ss̄)
φ→γf0(980)

(0), respectively.
The measurement of the f0(980) signal in the γπ0π0

reaction (SND Collaboration) gives the branching ratio
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Fig. 3. Amplitudes for strange and nonstrange compo-
nents, ss̄ and nn̄, as functions of the f0(980)-meson ra-

dius squared: a) F
(nn̄)
φ→γf0

(0)/Z
(nn̄)
φ→γf0

and F
(ss̄)
φ→γf0

(0)/Z
(ss̄)
φ→γf0

,

b) F
(nn̄)
f0→γγ(0)/Z

(nn̄)
f0→γγ and F

(ss̄)
f0→γγ(0)/Z

(ss̄)
f0→γγ .

BR(φ → γf0(980)) = (3.5 ± 0.3+1.3
−0.5) × 10−4 [11]; in

the analysis of γπ0π0 and γπ+π− channels (CMD Col-
laboration) it was found BR(φ → γf0(980)) = (2.90 ±
0.21± 1.5)× 10−4 [11]; the averaged value is given in [12]:
BR(φ → γf0(980)) = (3.4±0.4)×10−4. In our estimation
of the permissible interval for the mixing angle ϕ, we have
used the averaged value given by [12], with the inclusion
of systematic errors of the order of those found in [11]:
BR(φ → γf0(980)) = (3.4 ± 0.4+1.5

−0.5) × 10−4.
The calculated values of BR(φ → γf0(980)) agree with

experimental data for |ϕ| ≥ 25◦; larger values of the mix-
ing angle, |ϕ| ≥ 55◦, correspond to a more compact struc-
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Fig. 4. Branching ratio BR(φ(1020) → γf0(980)) as a function
of radius squared of the nn̄ component in f0(980). The band
with vertical shading stands for the experimental magnitude:
BR(φ → γf0(980)) = (3.4± 0.4+1.5

−0.5)× 10−4. Five other bands,
with skew shading, correspond to |ϕ| = 24◦, 37◦, 53◦, 64◦, 80◦

at −8◦ ≤ ϕV ≤ 8◦.

ture of f0(980), namely, R2
f0(980)

≤ 10 GeV−2, while small
mixing angles, |ϕ| ∼ 25◦, are related to a loosely bound
structure of the f0(980), R2

f0(980)
≥ 12 GeV−2.

The evaluation of the radius of f0(980) was performed
in [19] on the basis of GAMS data [20], where the t-
dependence was measured in the process π−p → f0(980)n
(t is the momentum squared transferred to f0(980)): these
data favour a comparatively compact structure of the qq̄
component in f0(980), namely, R2

f0(980)
= 6 ± 6 GeV−2.

3.2 Radiative decays
φ(1020) → γη, γη′, γπ0, γa0(980)

The decays φ(1020) → γη, γη′ do not provide us with a
direct information on the quark content of f0(980) and
φ(1020); still, calculations and comparison with data are
necessary to check the reliability of the method. The de-
cays φ(1020) → γπ0 and φ(1020) → γa0(980) allow us
to evaluate the admixture of the nn̄ component in the φ-
meson; as is seen in the previous section, this admixture
affects significantly the value Γφ(1020)→γf0(980).

For the transitions φ → γη and φ → γη′ we take into
account the dominant ss̄ component only: − sin θ ss̄ in η-
meson and cos θ ss̄ in η′-meson, with sin θ = 0.6.

For the pion wave function we have chosen bπ =
2.0 GeV−2 that corresponds to R2

π = 10.1 GeV−2, the
same radius is fixed for the nn̄ component in η and η′. As
to the strange component in η and η′, we put its slope to

be the same: bη(ss̄) = bη′(ss̄) = 2 GeV−2, that leads to a
smaller radius R2(ss̄) = 8.3 GeV−2.

The calculation results for branching ratios compared
to those given by the PDG compilation [12] are as follows:

BR(φ → ηγ) = 1.46 × 10−2 ,

BRPDG(φ → ηγ) = (1.30 ± 0.03) × 10−2 ,

BR(φ → η′γ) = 0.97 × 10−4 ,

BRPDG(φ → η′γ) = (0.67+0.35
−0.31) × 10−4. (51)

As is clearly seen, the calculated branching ratios agree
reasonably with those given in [12].

For the process φ → γπ0 the compilation [12] gives
BR(φ → γπ0) = (1.26 ± 0.10) × 10−3, and this value re-
quires | sin ϕV | � 0.07 (or |ϕV | � 4◦), for just with this
admixture of the nn̄ component in φ(1020) we reach the
agreement with data. However, in the estimation of the
allowed regions for mixing angle ϕ, fig. 4, we use

|ϕV | = 4◦ ± 4◦ (52)

considering the accuracy inherent to the quark model to
be comparable with the obtained small value of |ϕV |.

The process φ(1020) → γa0(980) depends also on the
mixing angle |ϕV |: the decay amplitude is proportional to
sin ϕV , namely, Aφ→γa0 = sinϕV A

(nn̄)
φ→γa0

. For the region
R2

a0(980)
∼ 8 GeV−2–12 GeV−2, our calculation gives the

following branching ratio:

BR (φ(1020) → γa0(980)) = sin2 ϕV · (14 ± 3) × 10−4 ,
(53)

with lower values for R2
a0(980)

∼ 8 GeV−2 and larger ones
for R2

a0(980)
∼ 12 GeV−2. At sin2 ϕV = 0.01 ± 0.01, we

have BR(φ(1020) → γa0(980)) = (0.14 ± 0.14) × 10−4.
In [11], the ηπ0 spectrum was measured in the radiative

decay φ(1020) → γηπ0: it was found that BR(φ(1020) →
γηπ0; Mηπ > 900 MeV) = (0.46 ± 0.13) × 10−4. This
value does not contradict eq. (53) with |ϕV | = 8◦; more-
over, if the ratio of the background/resonance in the region
Mηπ ∼ 900 MeV is not small, that is rather possible, the
value found in [11] agrees with smaller values of |ϕV |.

3.3 Radiative decays f0(980) → γγ and a0(980) → γγ

The amplitude Af0(980)→γγ(0, 0) is determined by the con-
tributions of two flavour components:

Af0(980)→γγ(0, 0) = cos ϕF
(nn̄)
f0(980)→γγ(0, 0)

+ sin ϕF
(ss̄)
f0(980)→γγ(0, 0) . (54)

The amplitudes Ann̄
f0(980)→γγ(0, 0) and Ass̄

f0(980)→γγ(0, 0)
depend on the radius squared of f0(980): these amplitudes
plotted versus R2

f0(980)
are shown in fig. 3b.

Figure 5 demonstrates the comparison of the cal-
culated partial width Γf0(980)→γγ , at different R2

f0(980)

and ϕ, with the magnitude found in [15]: Γf0(980)→γγ =
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Fig. 5. Partial width Γf0(980)→γγ ; experimental data are
from [15] (shaded area). Curves are calculated for a) positive
mixing angles ϕ = 77◦, 80◦, 85◦, 90◦, 93◦ and b) negative mix-
ing angles ϕ = −38◦,−43◦,−47◦,−54◦.

0.28+0.09
−0.13 . It is possible to describe the data using posi-

tive mixing angles 77◦ ≤ ϕ ≤ 93◦ as well as negative ones:
(−54◦) ≤ ϕ ≤ (−38◦).

The amplitude for the decay a0(980) → γγ is deter-
mined by the form factor of the nn̄ component in the
f0(980), with the only difference ζf0 → ζa0 . The amplitude
Aa0(980)→γγ/2ζa0(980)→γγ is shown in fig. 3b as a func-
tion of R2

a0(980)
. Experimental study of Γ (a0(980) → γγ)

was carried out in refs. [21,22], the averaged value is:
Γ (ηπ)Γ (γγ)/Γtotal = 0.24+0.08

−0.07 keV [12]. Using Γtotal �
Γ (ηπ) + Γ (KK̄), we have Γ (a0(980) → γγ) = 0.30+0.11

−0.10
keV. The calculated value of Γ (a0(980) → γγ) agrees with

data at R2
a0(980)

belonging to the interval 10 GeV−2 ≤
R2

a0(980)
≤ 26 GeV−2: the values of R2

a0(980)
of the order

of ∼ 10–17 GeV−2 look quite reasonable for a meson of
the 13P0qq̄ multiplet.

3.4 Partial widths for the two-photon decays of tensor
mesons

Here we present our results for the decays a2(1320) → γγ,
f2(1270) → γγ and f2(1525) → γγ.

3.4.1 Decay a2(1320) → γγ

The form factor F
(H)
a2(1320)→γγ(0, 0) is equal to that for the

nn̄ component, up to the charge factor:

F
(H)
a2(1320)→γγ(0, 0)/Za2(1320) = F

(H)
nn̄→γγ(0, 0)/Znn̄ . (55)

This universal form factor is determined by the spin struc-
ture of the vertex a2(1320) → qq̄, which is regulated by
the admixture of the 3F2qq̄ state in a2(1320). Figure 6
shows the calculated form factor F

(H)
nn̄→γγ(0, 0)/Znn̄ as a

functions of R2
T for different vertices given by eqs. (43),

(45) and (46).
The comparison with data is performed for the form

factors calculated with the use of minimal vertex given
by eq. (43). In fig. 7 we plot calculated values of
Γa2(1320)→γγ being a function of R2

a2(1320)
versus the

data: Γa2(1320)→γγ = 0.98 ± 0.05 ± 0.09 keV [23] and
Γa2(1320)→γγ = 0.96±0.03±0.13 keV [24]. The calculated
value of Γa2(1320)→γγ reproduces data with R2

a2(1320)
<∼

9 GeV−2 only. Still, one should not be convinced that
larger values of the radius R2

a2(1320)
are excluded by the

data. Experimental extraction of the signal a2(1320) → γγ
faces the problem of a correct account for coherent back-
ground. This problem has been investigated in [25]: it was
shown that the measured value of Γa2(1320)→γγ can fall
down by a factor ∼ 1.5, due to the interference “signal-
background”. Therefore, being careful, we estimate the
region for Γa2(1320)→γγ allowed by the data as 1.12 keV≤
Γa2(1320)→γγ ≤ 0.60 keV.

Comparing the calculations with data, one should take
into account uncertainties inherent in the model. In our
calculation, Γa2(1320)→γγ strongly depends on the con-
stituent quark mass. In fig. 6, the form factors and par-
tial widths are depicted for mu,d = 350 MeV and ms =
500 MeV. However, decreasing of constituent quark mass
by 10% results in the increase of the form factor F

(s)
nn̄ (0, 0)

approximately by 10%, that means the 20% growth of the
calculated value of Γa2(1320)→γγ at fixed R2

a2(1320)
. The

10% uncertainty in the definition of the constituent quark
mass looks quite reasonable, therefore, the 20% error in
the model prediction for Γa2(1320)→γγ is to be regarded as
normal.
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Fig. 6. Transition form factors T → γγ (see (17) or (24))
for the nonstrange (nn̄) and strange (ss̄) quarks versus mean

tensor-meson radius squared, R2
T . a) F

(0)
qq̄ (0, 0) and F

(2)
qq̄ (0, 0)

for 13P2qq̄ state with minimal vertex, eq. (41); b) the same as

a) but with the vertex determined by (45); c) F
(0)
qq̄ (0, 0) and

F
(2)
qq̄ (0, 0) for 13F2qq̄ state with vertex given by (46).

Fig. 7. Partial widths for a2 → γγ versus mean tensor-meson
radius squared, R2

T . Thick solid line: Γ (a2(1320) → γγ) for the
vertex given by (43); dashed line: Γ (a2(1320) → γγ) for the
vertex given by (45); dotted line: Γ (a2(∼ 2000) → γγ) for the
vertex given by (46).

Summing up, the calculation of Γa2(1320)→γγ with the
minimal vertex a2(1320) → qq̄ given by (43) provides rea-
sonable agreement with data at 7 GeV−2 <∼ R2

a2(1320)
<∼

13 GeV−2.
The vertex corresponding to the production of the qq̄

pair in the F -wave, eq. (46), gives partial-width value ∼
0.1 keV that is by an order of magnitude less than for the
P -wave qq̄ component.

The vertex for pure P -wave qq̄ state, see (45), gives us
a 10% smaller value of Γa2(1320)→γγ as compared to what
is provided by minimal vertex (43).

3.4.2 The decays f2(1270) → γγ and f2(1525) → γγ

We define the wave functions of f2(1270) and f2(1525) as
follows:

Ψf2(1270)(s) = (cos ϕT nn̄ + sin ϕT ss̄) ψT (s),
Ψf2(1525)(s) = (− sin ϕT nn̄ + cos ϕT ss̄) ψT (s). (56)

Then, the form factors for the two-photon decays of f2-
mesons read

F
(H)
f2(1270)→γγ(0, 0) = cos ϕT F

(H)
nn̄→γγ(0, 0)

+ sin ϕT F
(H)
ss̄→γγ(0, 0),

F
(H)
f2(1525)→γγ(0, 0) = − sin ϕT F

(H)
nn̄→γγ(0, 0)

+ cos ϕT F
(H)
ss̄→γγ(0, 0). (57)

Following [12,23–25], we put the following values for par-
tial widths: Γf2(1270)→γγ = (2.60 ± 0.25+0.00

−0.25) keV and
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Fig. 8. The (R2
T , ϕ)-plot, where ϕ is the mixing angle for

the flavour components f2(1270) = nn̄ cos ϕ + ss̄ sin ϕ and
f2(1525) = −nn̄ sin ϕ + ss̄ cos ϕ; hatched areas show the re-
gions allowed by data for the decays f2(1270) → γγ and
f2(1525) → γγ.

Γf2(1525)→γγ = (0.097 ± 0.015+0.00
−0.25) keV. The magnitude

of the extracted signal depends on the type of model used
for the description of the background. With coherent back-
ground, the magnitude of the signal decreases, and the
second error in Γf2(1270)→γγ and Γf2(1525)→γγ is related to
the background uncertainties.

A satisfactory description of the data has been reached
with R2

T
<∼ 10 GeV−2 and two mixing angles ϕT : ϕT � 0◦

and ϕT � 25◦, see fig. 8. For example, at R2
fT

= 9 GeV−2

and ϕT = 0◦, the calculations result in Γf2(1270)→γγ =
2.240 keV and Γf2(1525)→γγ = 0.090 keV. Nearly the same
values are reproduced at R2

fT
= 9 GeV−2 and ϕT = 25◦,

namely, Γf2(1270)→γγ = 2.237 keV and Γf2(1525)→γγ =
0.093 keV.

As for the reaction a2(1320) → γγ, the model un-
certainties, ∼ 20%, are inherent in the calculations of
Γf2(1270)→γγ and Γf2(1525)→γγ .

4 Conclusion

Figure 9 demonstrates the (ϕ,R2
f0(980)

)-plot where the al-
lowed areas for the reactions φ(1020) → γf0(980) and
f0(980) → γγ are shown. We see that radiative decays
φ(1020) → γf0(980) and f0(980) → γγ are well described
in the framework of the hypothesis of the dominant qq̄
structure of f0(980). The solution with negative ϕ seems
more preferable. For this solution the mixing angle ϕ for
the nn̄ and ss̄ components (nn̄ cos ϕ + ss̄ sin ϕ) is equal
to ϕ = −48◦ ± 6◦, that is, the qq̄ component is rather
close to the flavour octet (ϕoctet = −54.7◦). However, the

Fig. 9. The (ϕ, R2
f0(980))-plot: the shaded areas are the allowed

regions for the reactions φ(1020) → γf0(980) and f0(980) →
γγ.

radiative-decay data do not exclude the variant when the
f0(980) is an almost pure ss̄ state with ϕ = 85◦ ± 5◦.

The dominance of the quark-antiquark component
does not exclude the existence of other components in
f0(980) on the level 10%–20%. The location of the res-
onance pole near the KK̄ threshold definitely points to
a certain admixture of the long-range KK̄ component in
f0(980). To investigate this admixture, precise measure-
ments of the KK̄ spectra in the interval 1000–1150 MeV
are necessary: only these spectra could shed the light on
the role of the long-range KK̄ component in f0(980).

The existence of the long-range KK̄ component or that
of gluonium in the f0(980) results in a decrease of the ss̄
fraction in the qq̄ component: for example, if the long-
range KK̄ (or gluonium) admixture is of the order of 15%,
the data require either ϕ = −45◦ ± 6◦ or ϕ = 83◦ ± 4◦.

There is no problem with the description of the decay
a0(980) → γγ within the hypothesis about the qq̄ origin
of the a0(980): the data are in good agreement with the
results of calculations at R2

a0(980)
∼ 10–17 GeV−2.

We have calculated the two-photon decays of tensor
mesons, members of the qq̄ multiplet 13P2qq̄. The calcu-
lated partial widths of radiative decays, a2(1320) → γγ,
f2(1270) → γγ and f2(1525) → γγ, are in reasonable
agreement with the data. The radial wave functions of
a2(1320), f2(1270) and f2(1525) are close to those of
a0(980) and f0(980) found in the study of the radiative
decays a0(980) → γγ, f0(980) → γγ and φ(1020) →
γf0(980). The possibility to simultaneously describe scalar
and tensor mesons using approximately equal radial wave
functions may be considered as a strong argument in
favour of the fact that all these mesons, tensor ones,
a2(1320), f2(1270) and f2(1525) and scalar ones, a0(980)
and f0(980), are members of the same P -wave qq̄ multi-
plet.
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